On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems

نویسندگان

  • Boyce E. Griffith
  • Charles S. Peskin
چکیده

The immersed boundary method is both a mathematical formulation and a numerical scheme for problems involving the interaction of a viscous incompressible fluid and a (visco-)elastic structure. In [M.-C. Lai, Simulations of the flow past an array of circular cylinders as a test of the immersed boundary method, Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University, 1998; M.-C. Lai, C.S. Peskin, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys. 160 (2000) 705–719], Lai and Peskin introduced a formally second order accurate immersed boundary method, but the convergence properties of their algorithm have only been examined computationally for problems with nonsmooth solutions. Consequently, in practice only first order convergence rates have been observed. In the present work, we describe a new formally second order accurate immersed boundary method and demonstrate its performance for a prototypical fluid–structure interaction problem, involving an immersed viscoelastic shell of finite thickness, studied over a broad range of Reynolds numbers. We consider two sets of material properties for the viscoelastic structure, including a case where the material properties of the coupled system are discontinuous at the fluid–structure interface. For both sets of material properties, the true solutions appear to possess sufficient smoothness for the method to converge at a second order rate for fully resolved computations. 2005 Elsevier Inc. All rights reserved. MSC: 65M06; 73K15; 73V15; 76D05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An adaptive, formally second order accurate version of the immersed boundary method

Like many problems in biofluid mechanics, cardiac mechanics can be modeled as the dynamic interaction of a viscous incompressible fluid (the blood) and a (visco-)elastic structure (the muscular walls and the valves of the heart). The immersed boundary method is a mathematical formulation and numerical approach to such problems that was originally introduced to study blood flow through heart val...

متن کامل

An ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems

As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...

متن کامل

A Novel Finite Difference Method of Order Three for the Third Order Boundary Value Problem in ODEs

In this article we have developed third order exact finite difference method for the numerical solution of third order boundary value problems. We constructed our numerical technique without change in structure of the coefficient matrix of the second-order method in cite{Pand}. We have discussed convergence of the proposed method. Numerical experiments on model test problems approves the simply...

متن کامل

A numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method

In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...

متن کامل

An ‎E‎ffective Numerical Technique for Solving Second Order Linear Two-Point Boundary Value Problems with Deviating Argument

Based on reproducing kernel theory, an effective numerical technique is proposed for solving second order linear two-point boundary value problems with deviating argument. In this method, reproducing kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005